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Abstract. In this paper we present a unified treatment that combines the analyticity properties of the
scattering amplitudes, the threshold and asymptotic behaviors, the invariance group of Moebius transfor-
mations, the automorphic functions defined over this invariance group, the fundamental region in (Poincaré)
geometry, and the generators of the invariance group as they relate to the fundamental region. Using these
concepts and techniques, we provide a theoretical basis for Veneziano type amplitudes with the ghost
elimination condition built in, related the Regge trajectory functions to the generators of the invariance
group, constrained the values of the Regge trajectories to take only inverse integer values at the threshold,
used the threshold behavior in the forward direction to deduce the Pomeranchuk trajectory as well as
other relations. The enabling tool for this unified treatment came from the multi-sheet conformal mapping
techniques that map the physical sheet to a fundamental region which in turn defines a Riemann surface
on which a global uniformization variable for the scattering amplitude is calculated via an automorphic
function, which in turn can be constructed as a quotient of two automorphic forms of the same dimension.

1 Introduction

Superstring theory, that has evolved into M-theory [1], has
its genesis in a representation for the four point scatter-
ing amplitude by Veneziano [2]. The Veneziano formula
has intrigued the physicists ever since, and a considerable
effort has been spent in working backward to understand
the underlying principles and symmetries [3,4] (also see
[1] and [10]).

The basic physics for our formalism is provided by the
analyticity properties [5] of the amplitude f(s, t) in the
s-plane, and its threshold and asymptotic behaviors. The
approach presented in this paper derives some new re-
lationships that interlink the analyticity properties of the
scattering amplitude with a Veneziano type representation
for the four-point amplitude and the values of the Regge
trajectory functions [6]. We accomplish this by using the
multi-sheet conformal mapping techniques [7,8] that un-
fold the branch points of the scattering amplitude to map
its sheets, physical and unphysical, onto a Riemann sur-
face on which the amplitude is a single valued function [9].
The Riemann surface is associated with an automorphic
function which affords one to use a global uniformization
variable for the expansion of the amplitude on the en-
tire Riemann surface. The automorphic function [19,20] is
invariant under a specified group of Moebius transforma-
tions, and in our case the group is generated by two gener-
ators determined in terms of the values of Regge trajectory
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functions. The result is a coherent description of many
physical aspects in terms of a well-developed mathemati-
cal framework. Using this framework we employ conformal
mapping techniques to transform the upper half s-plane to
a triangle in an ω-plane. The transformation function de-
pends on the variable s and the angles of the triangle. We
use arguments based on the behavior of the amplitude at
the threshold and asymptotic energies to relate these an-
gles to the values of the Regge trajectory functions. This
geometrical picture sheds new light on the Regge trajec-
tory functions, the Veneziano model, the ghost elimination
condition, and the Pomeranchuk trajectory. In addition,
the formalism has rich mathematical connections to the
discontinuous groups of Moebius transformations, funda-
mental regions, and automorphic functions. We hope that
this new picture will provide incentives to the string and
membrane theory efforts [10] (see also Chapt. 2 in [1]).

2 Analyticity and conformal mapping

Consider the four point scattering amplitude f(s, t) as a
function of the Mandelstam variables [5] s, t, and u with
s + t + u = 4m2, where m is the mass of each scattering
particle in the equal mass case. In this treatment we will
take the momentum transfer variable t to be fixed and let
s be the energy variable. Such a function has well known
analyticity properties as a function of its complex argu-
ments [5]. It has two branch point singularities at s = s0
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Fig. 1a,b. The analyticity of scattering amplitude in the (a)
s-plane, and in the (b) z-plane

and s = u0 ≤ 0 as well as one branch point at ∞. These
analyticity properties are shown in Fig. 1a.

The cut along the right hand real s-axis corresponds
to the s-channel interactions, while the cut along the neg-
ative real s-axis arises from the requirement of crossing
symmetry and represents the t-channel interactions [5].
We have considered only the singularities corresponding
to the two particle thresholds. These are situated at the
branch points s0 and u0; if we fix u at u = u0 and let
t represent the momentum transfer then the right hand
cut starts at s0 = 4m2 − t − u0, which takes its low-
est value, namely 4m2, in the case of forward scattering
when t = 0 and u0 = 0. For non-forward directions, the
point s0 = 4m2 is an unphysical point and the behavior
of the amplitude at this unphysical point is different from
the physical threshold behavior, which is known to be of
square root type.

We employ a conformal transformation to map the s-
plane onto a z-plane such that the three branch points s0,
u0 and ∞ are respectively mapped onto 1, 0, and ∞:

z =
s − u0

s0 − u0
. (1)

The cut z-plane is shown in Fig. 1b.
Next we map the upper half cut z-plane (Im z > 0)

onto the triangle DEF in the ω-plane, as shown in Fig. 2.
The existence and construction of this mapping is proven
by the Schwarz–Christoffel theorem [11].

The mapping function in the present case is referred
to as the Schwarz triangle function, and it is given by the
incomplete Euler beta function as follows:

ω(z) =
∫ z

0
xA−1(1 − x)B−1dx . (2)

The transformation represented by (2) maps the upper
half z-plane onto the triangle DEF such that the branch
points at 0, 1, and ∞ in the z-plane are respectively
mapped onto the vertices D, E, and F of the triangle DEF
in the ω-plane.

The parameters A and B in (2) are related to the in-
terior angles of the triangle DEF as follows:

πA = ∠EDF (3a)

ω

D

F

E

Fig. 2. The upper half z-plane is mapped onto the triangle
DEF in the ω-plane

πB = ∠DEF . (3b)

They determine the precise behavior of the amplitude at
its branch points. We now introduce a quantity C as fol-
lows:

πC = ∠DFE . (3c)

Obviously we have the following Euclidean relation:

A + B + C = 1 . (4)

3 Relation to Regge trajectories

In order to determine the transformation function ω rep-
resented by (2), we need to determine two of the three
angles of the triangle DEF. We will do this by requiring
that the transformation function ω possess the behavior of
the amplitude at the threshold and asymptotic energies.
Since the amplitude f(s, t) would eventually be described
as a function of ω, it makes sense to build as much of its
analyticity as possible into the transformation variable ω.
As discussed in [8], this in fact is the main idea behind
the multi-Riemann sheet conformal mapping techniques.

For this purpose, let us examine the behavior of the
conformal mapping variable ω at the vertices D, E, and
F.

3.1 Asymptotic behavior

Let us consider the behavior of (2) for asymptotic values
of the energy s. The point s = ∞ is mapped onto z = ∞,
which is mapped onto the vertex F in the ω-plane. In the
neighborhood of z = ∞, the mapping function ω behaves
as follows:

ω(z) = ω(∞) +
[
1
z
h

(
1
z

)]C−1

, (5)

where C is given by (3c) and h
( 1

z

)
is regular and non-zero

at z = ∞.
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Asymptotically, the amplitude is known to have the
Regge behavior [12]

f(s, t) −→
s→∞ sα(t) , (6)

where α(t) is the t-channel Regge trajectory function.
Comparing (5) and (6) and recalling (1) we obtain

C = 1 − α(t) . (7)

The momentum transfer variable t ≤ 0 is fixed. As t is
fixed at different values, the geometry of the triangle in
Fig. 2 changes accordingly. This use of a variable geomet-
rical region for the purpose of conformal mapping tech-
niques is one distinguishing aspect of the present research
compared to other conformal mapping methods used in
particle physics [13].

3.2 Behavior at the branch points

Let us next consider the behavior of (2) at the point s0.
The s-channel threshold s0 is mapped onto the point z = 1
which in turn is mapped onto the vertex E of the triangle.
In this neighborhood, the ω of (2) behaves as follows:

ω(z) = ω(1) + [(z − 1)h1(z − 1)]B−1 , (8)

where h1(z−1) is a function regular and non-zero at z = 1,
and B is given by (3b).

The behavior of the amplitude at this point is the be-
havior of the Legendre polynomial (Pα(s)(cos θs)) at the
branch point s = s0, as it is analytically continued from
the point α(s) = integer, cos θs = 1+ 2t

s−s0
to the unphys-

ical point t �= 0, s = s0 = 4m2. Noting that cos θ
s→s0−→ ∞

we have [14] (also see [5])

f(s, t) −→
s→s0

(s − s0)−α(s0) , (9)

where α(s) is the s-channel Regge trajectory function.
Comparing (8) and (9) and recalling (1) we obtain

B = 1 − α(s) , (10)

where α(s) is evaluated at the branch point s = s0, which
is an unphysical point for non-forward directions, i.e. the
point s0 for t �= 0 is unphysical. The behavior of the ampli-
tude in this unphysical region is different from the physical
threshold behavior. Equation (9) describes this behavior of
the amplitude at the point s0 in the unphysical region. For
the case of forward scattering the point s0 is the physical
threshold and (9) ought to reproduce the known square
root type behavior, as we will discuss later.

3.3 Ghost elimination condition

Let us introduce a u-channel Regge trajectory function
α(u) as follows:

A = 1 − α(u) , (11)

where A is given by (3a).
Equations (7), (10), and (11) provide a geometrical in-

terpretation for the Regge trajectories. Together with (4),
they yield the following relation

α(s) + α(t) + α(u) = 2 . (12)

This is the original condition to eliminate ghosts from the
Veneziano amplitude [3]. In our treatment it arises nat-
urally from the formalism whereas in the literature it is
imposed by hand. Further, in our formalism the condition
arises quite generally.

3.4 Pomeranchuk trajectory
and the threshold behavior

The threshold points s0 and u0 in Fig. 1a would become
the physical two particle thresholds for the case of zero
momentum transfer, t = 0 and u0 = 0. The branch points
at these two particle physical thresholds are of the square
root type, as shown in [5]. To obtain a square root behavior
at s = s0 we use (8) and (9), and require

1 − B = α(s = s0 = 4m2) = 1
2 . (13)

This result is quite general and it arises from the threshold
behavior in the forward direction. However such a result
for the pion scattering was derived [15] using the Adler
zero based on the partially conserved axial vector current
(PCAC) approach.

Similarly, for the square root branch point at s = u0,
we obtain the following result:

1 − A = α(u = u0 = 0) = 1
2 . (14)

Invoking (12) we obtain

α(t = 0) = 1 . (15)

This is a Pomeranchuk type trajectory with unit inter-
cept. In our formalism, it arises quite generally from the
square root type branch points at the two particle physical
thresholds. In view of (6) the Pomeranchuk trajectory will
determine the asymptotic behavior, though we have made
no recourse to any interpretation of the Pomeranchuk as a
Regge pole. The Pomeranchuk trajectory indeed plays an
important role in understanding the high energy behavior
of total cross sections in the forward direction [16] (also
see Chapt. 3 of [5]).

Equation (15) makes no statement on the slope of the
Pomeranchuk trajectory. Indeed, it arises from the thresh-
old behavior in the forward direction. Any statement on
the slope parameter would, in our formalism, make a si-
multaneous statement about the threshold behavior in
non-forward directions, as one analytically continues from
t = 0 to the appropriate non-zero t value and the points at
which (13) and (14) are evaluated move from the physical
region to the unphysical region. This is an interesting and
potentially useful relationship, as the experimental data
leave an uncertainty in the slope parameter [17]. To restate
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the relationship, one must also examine the threshold be-
havior in the non-forward directions in order to analyze
the slope of the Pomeranchuk.

Equations (13)–(15) show that, in the special case of
t = 0, the triangle in Fig. 2 degenerates into a vertical
strip such that the angles at the vertices D and E are each
a right angle and the angle at the vertex F is zero. At the
same time the mapping function given by (2) reduces to
the following trigonometric function:

ω1(z) =
∫ z

0
x

1
2 −1(1 − x)

1
2 −1dx = arccos(1 − 2z) . (16)

This representation does indeed have the square root type
branch points at z = 1 and 0, while it behaves logarith-
mically at infinity. It can be potentially useful to analyze
the scattering data in the forward direction. A similar ge-
ometry with a different type of branch points did prove
useful in the analysis of the partial wave scattering [18].

4 Amplitude representation

As discussed above, the conformal mapping of the upper
half s-plane onto the triangle DEF in the ω-plane is given
by the following representation:

ω(z) =
∫ z

0
x−α(u)(1 − x)−α(s)dx , (17)

where we have substituted (10) and (11) in (2).
As is discussed in [9,25] the value of the conformal

mapping variable ω lies in its ability to yield simple rep-
resentations for the amplitude f(s, t). As a function of ω
the amplitude is a meromorphic function, and away from
any pole we can seek a representation by the following
equation:

f(s, t) = φ(ω) =
n=∞∑
n=0

an(ω − ωc)n , (18)

where ω is given by (17), and ωc is the point around which
the expansion is sought. This representation can form the
basis for polynomial approximations to evaluate the am-
plitude in special phenomenological cases. Reference [13]
describes some examples of such polynomial approxima-
tions. Such polynomial approximations will automatically
have the correct threshold and asymptotic behavior, and
they will reflect the correct analyticity properties of the
amplitude with respect to the left and right hand cuts
involving the three branch point singularities shown in
Fig. 1. Below, we illustrate this point by seeking the sim-
plest approximations around the three vertices of the tri-
angle DEF in Fig. 2.

For the approximation near the vertex D, we recall
that the variable ω correctly represents the analyticity of
the amplitude, i.e. it carries the two particle thresholds
for the s- and t-channels, as well as the threshold and
asymptotic behaviors. Taking ωc = 0 in (18) the simplest
representation for the amplitude is as follows:

φ0(ω) = ω . (19)

For the approximation near the vertex E, which corre-
sponds to s = s0 or z = 1, we use (19) to evaluate the con-
stant term in (18) for the expansion around the s-channel
threshold. This constant term reads as follows:

Γ (1 − α(s))Γ (1 − α(u))
Γ (2 − α(s) − α(u))

. (20)

For the approximation near the vertex F, let us expand
about the point at infinity, which corresponds to z = ∞.
A similar procedure yields the constant term for this ex-
pansion as follows:

Γ (1 − α(s))Γ (1 − α(u))
Γ (2 − α(s) − α(u))

+(−1)−α(s) Γ (1 − α(s))Γ (1 − α(t))
Γ (2 − α(s) − α(t))

, (21)

where we decomposed the range of integration 0 to ∞
into the ranges 0 to 1 and 1 to ∞, changed the variable
as z → 1

r in the second range, and used (12).
The similarity of these terms with the Veneziano model

is obvious. The next order terms can also be included,
which may help to restore the unitarity property of the
Veneziano amplitude, in so far as they incorporate the
branch point cuts.

Equations (20) and (21) would correspond to the
Veneziano model under two ad hoc assumptions. First,
one has to assume that the Regge trajectory functions
can be meaningfully defined away from the point at which
(20) and (21) are evaluated. Second, one has to postu-
late that when the trajectory functions are so defined, the
higher order terms in (18) can be neglected. Our formalism
provides a systematic way to scrutinize such assumptions
and possibly can help resolve some problems, such as the
violation of unitarity.

The representations given in this section hold for the
Regge trajectories that are used to evaluate (3a) through
(3c) in the light of the relations (7), (10), and (11).

5 Relationship to automorphic functions

Let us take another look at Fig. 2. It shows how the upper
half z-plane shown in Fig. 1b is mapped onto the ω-plane.
Let us now consider how the entire z-plane maps onto
the ω-plane. This is shown in Fig. 3. The entire z-plane in
Fig. 1b is mapped on to the quadrilateral DFEG in the ω-
plane by the transformation in (2), and equivalently (17).
The upper and lower edges of the right hand cut in Fig. 1
have been unfolded onto the sides EF and EG respectively,
of the quadrilateral DFEG, and they are called conjugate
sides. Similarly, the upper and lower edges of the left hand
cut have been unfolded onto the conjugate sides DF and
DG respectively.

In the parlance of automorphic functions and discon-
tinuous groups of Moebius transformations [19,20], the
quadrilateral DFEG is referred to as a “fundamental re-
gion”. There is a group of discontinuous transformations
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Fig. 3. Mapping of the entire z-plane shown in Fig. 1b on to
the ω-plane

associated with this fundamental region. The group is gen-
erated by the transformations that map the pair of conju-
gate sides of the fundamental region onto each other. Thus
one generator of the group is the transformation that maps
the side DF on the side DG. It is given by the rotation
represented by the Moebius transformation T1 below:

T1 =

(
exp(−iπα(u)) 0

0 exp(iπα(u))

)
. (22)

The second generator corresponds to the transformation
that maps the side EF on the side EG. It is given by the
Moebius transformation T2 below:

T2 =

(
exp(iπα(s)) (2id) sin πα(s)

0 exp(−iπα(s))

)
, (23)

where d is the length DE in Fig. 3, which is represented
by the expression numbered (20) above. Thus d is given
by the following equation:

d =
Γ (1 − α(s))Γ (1 − α(u))

Γ (2 − α(s) − α(u))
. (24)

It is interesting that the values of the Regge trajectory
functions enter in the generators for the underlying in-
variance group.

Each copy of the fundamental region DFEG under a
Moebius transformation belonging to the group generated
by the above generators is a complete map of the entire
z-plane. The conformal mapping variable ω is thus a mul-
tivalued function of z. The inverse transformation of (2),
or equivalently (17), would map the multiple values of ω
on to the same value of z, and z is an automorphic func-
tion of ω under the group of discontinous transformations
generated by T1 and T2. The automorphic functions are a
strong instrument to understand some interrelations be-
tween geometry, discrete groups of Moebius transforma-
tions, and conformal mappings [8].

At the same time, according to a theorem, the trans-
forms of the “fundamental region” under these transfor-
mations will completely cover the ω-plane, without over-
laps and without leaving any chinks [19,20]. This aspect

requires that the generators T1 and T2 be cyclic of finite
or infinite order. If a generator would have a finite order
n, it implies from the structure of T1 and T2 that the cor-
responding Regge trajectory function shall take values at
the threshold points s0 and u0 according to the following
constraint:

α =
1
n

. (25)

Two special cases of this result were described above. One
corresponds to n = 1 which corresponds to (15) for the
Pomeranchuk trajectory. The case n = 2 corresponds to
(14) that also corresponds to the Adler zero.

Equation (25) has another significance. Without such
a constraint, the group of transformations generated by
the generators in (22) and (23) might not be a subgroup
of the modular group. The relevance of the subgroups of
the modular group in reproducing the mass spectrum of
the particles was realized [21] early in the history of the
dual strings.

6 Generalization to non-Euclidean geometry

The approach can be extended to the case of non-
Euclidean geometry, in particular the Poincaré model [22].
The need to use non-Euclidean geometry would be indi-
cated if the constraint in (12) would read as follows:

α(s) + α(t) + α(u) > 2 . (26)

This can correspond to the case where the generators of
the underlying discontinuous group of Moebius transfor-
mations would turn out to be cyclic with infinite order.
The geometry for the fundamental region would then in-
volve curvilinear triangles. The transformation would then
be represented by a general class of functions known as
Riemann–Schwarz triangle functions [23]. Defining A, B,
and C as in (3a) to (3c), the relationship between the
angles now reads as follows:

A + B + C < 1 . (27)

The transformation from the z-plane to the ω-plane is now
given by the following equation:

ω = τ(z) =
f1(z)
f2(z)

, (28)

where

f1(z) =
∫ 1

0
dt
[
t−

1
2 (1+A+B+C)(1 − t)− 1

2 (1+A−B−C)

(1 − zt)− 1
2 (1−A+B−C)

]
, (29a)

f2(z) =
∫ 1

0
dt
[
t−

1
2 (1+A+B+C)(1 − t)− 1

2 (1−A−B+C)

(1 − t + zt)− 1
2 (1−A+B−C)

]
. (29b)
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An alternative representation using the familiar
Gamma functions (Γ ) and Gaussian hypergeometric func-
tions (F

21
) is as follows:

τ(z) =
g1(z)
g2(z)

, (30)

where

g1(z) =
Γ
( 1

2 (1 − A + B + C)
)

Γ (1 − A)
(31a)

× F
21

( 1

2
(1 − A + B − C),

1

2
(1 − A − B − C); 1 − A; z

)
,

g2(z) =
Γ
( 1

2 (1 + A + B − C)
)

Γ (1 − C)
(31b)

× F
21

( 1

2
(1 − A + B − C),

1

2
(1 − A − B − C); 1 − C; 1 − z

)
.

A special case corresponding to A = B = C = 0 of this
transformation was found to be useful in exploring the
analyticity properties of the partial wave scattering am-
plitudes [24]. The result was a generalized effective range
theory that was valid for all non-relativistic energies and
offered a fast convergence rate [25].

7 Summary and conclusions

In this paper we used the basic physical input in the form
of the analyticity of the scattering amplitude, its asymp-
totic behavior, and its behavior at the branch points. We
used the tools provided by the multi-sheet conformal map-
ping techniques to derive numerous inter-relationships;
some previously known in the literature, though from
quite a different theoretical basis, and some new ones. The
formalism yielded many significant results: it related the
Veneziano type amplitude to the analyticity; it provided
a theoretical basis for the ghost elimination condition as
well as possible approaches to restore unitarity. Additional
relationships are also derived, including the existence of a
Pomeranchuk type trajectory with a unit intercept. The
Pomeranchuk is expected as a consequence of the square
root type behavior at the two particle thresholds for the
forward scattering. It is also expected via the constraint
(25) on the values of the Regge trajectory functions. This
constraint derives from a new relationship that our formal-
ism makes possible by connecting the Regge trajectory
functions to the generators of the underlying invariance
group of discontinuous transformations. The formalism re-
lates the slope parameter of the Pomeranchuk trajectory
to the analytic continuation of the forward scattering am-
plitude to the non-forward directions in the vicinity of the
two particle thresholds. Further consequences of these new
relationships remain to be explored.
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